A posteriori analysis of an iterative multi-discretization method for reaction–diffusion systems

نویسنده

  • V. Ginting
چکیده

Article history: Received 2 July 2012 Received in revised form 10 February 2013 Accepted 15 August 2013 Available online 23 August 2013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Criteria for Iterative Methods in Solving Convection-diffusion Equations on Adaptive Meshes

In this work, sparse linear systems obtained from the streamline diffusion finite element discretization of the convection-diffusion equations are solved by a multigrid method and the generalized minimal residule method. Adaptive mesh refinement process is considered as an integral part of the solution process. We propose some stopping criteria for iterative solvers to ensure the iterative erro...

متن کامل

Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs

We consider nonlinear algebraic systems resulting from numerical discretizations of nonlinear partial differential equations of diffusion type. To solve these systems, some iterative nonlinear solver and, on each step of this solver, some iterative linear solver are used. We derive adaptive stopping criteria for both iterative solvers. Our criteria are based on an a posteriori error estimate wh...

متن کامل

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

A Posteriori Error Estimates including Algebraic Error: Computable Upper Bounds and Stopping Criteria for Iterative Solvers

We consider the finite volume and the lowest-order mixed finite element discretizations of a second-order elliptic pure diffusion model problem. The first goal of this paper is to derive guaranteed and fully computable a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be simply bounded using t...

متن کامل

A posteriori analysis and adaptive error control for operator decomposition solution of coupled semilinear elliptic systems

In this paper, we develop an a posteriori error analysis for operator decomposition iteration methods applied to systems of coupled semilinear elliptic problems. The goal is to compute accurate error estimates that account for the combined effects arising from numerical approximation (discretization) and operator decomposition iteration. In an earlier paper [1], we considered “triangular” syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013